If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2+14z-24=0
a = 3; b = 14; c = -24;
Δ = b2-4ac
Δ = 142-4·3·(-24)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-22}{2*3}=\frac{-36}{6} =-6 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+22}{2*3}=\frac{8}{6} =1+1/3 $
| -2x/6=-30.5 | | 2(-8-3x)+5=-53 | | ^2x-2x-15=0 | | 90+60+2x=180 | | 7-3x=3=8X | | 18+3x+5x-6•2=2x+6 | | -2x-5(2x-3)=19 | | (2x+21)-5x=0 | | 12+7x-21=-8(3-x)4x | | 5x+3’=2x-3 | | 2x=60+5× | | 7x+156=9x184 | | V=4/3x3.14x64 | | 5b+12=(b+6) | | -3/10+a=2/55 | | -8=x-(-15) | | 3(n-6)=7-5(n-3) | | 2x^2+15=x | | 1⁄2n·=3 | | 5b^2-20=-11b | | 29-n=4(n-2) | | 1/8x/5=25 | | 2(2x+5)=2x+7 | | 2x+3x=34 | | 2x+20=60,x | | 2x+12=x6 | | 2x-4=-9=x | | 5x-3=-4x+24 | | 4(x+3)=4x+5 | | 1/4v=2.5 | | w=w+5 | | w=3(w-2) |